Jump to content
Check your account email address ×

What Is COVID Actually Doing to Our Immune Systems?


Recommended Posts

  • Platinum Contributing Member

Lets not forget the mRNA jab makes the bodies immune system act like it had COVID.

Both the article and the study provide some very interesting reading on what the virus and mRNA vaccine do to the immune system. 

https://slate.com/technology/2023/01/immunity-covid-research-airborne-aids-debunk.html

When the immune system goes awry, it’s bad news. A wonky immune system might mean that you’re more likely to catch colds and flus, or be infected by other pathogens—and less likely to shake them off. It might mean that your body fails to detect and destroy growing tumors. It might even mean that the body turns against itself, leading to chronic autoimmune conditions like arthritis or Crohn’s disease. The fallout of immune system dysfunction on the human body is widespread and unpredictable—which is why it was so concerning in 2020 when evidence began to amass that COVID-19 seemed to be disrupting human immunology. So much so, in fact, that John Wherry, director of the Penn Medicine Immune Health Institute, summed it up this way to Kaiser Health News: “COVID is deranging the immune system.”

Most of the early immunological evidence—the evidence that Wherry was referring to—came from patients who died or suffered severe COVID. Now, three years of infections and immunizations later, severe COVID is getting mercifully less common; a brush with the virus may well feel unremarkable. And a new idea about how COVID can affect immunity has emerged: that even mild infections routinely cause consequential damage to our bodies’ defenses. This quiet degradation was memorably termed “immunity theft” by one evolutionary biologist speculating on why this fall’s respiratory virus season seemed more severe than usual.

There are plenty of reasons to not want to get COVID over and over, but the prospect of an increasingly damaged immune system is a particularly compelling one. Throughout the pandemic, scientific evidence has mounted that mild COVID infections may be doing something to our immune systems—prompting many on social media to hyperbolically describe COVID as “airborne AIDS.” But the lessons that scientists are drawing from their research are nuanced—and the larger picture says more about the sturdiness of our collective immunity than anything else.

There are a few ways scientists can probe COVID’s impact on immune systems. One is to investigate how well the immune system can rally against a second go-round with SARS-CoV-2. At the start of the pandemic, Shane Crotty, of the La Jolla Institute of Immunology, published some of the first papers looking at the immune response to COVID. “There was a lot of concern about how strange it might look,” he said. But really, “it looks as we would largely expect for a respiratory viral infection.” Antibodies recognize and subdue the virus, while immune memory cells linger about, ready to gear up for the next infection. A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012513/

Vaccination has also been demonstrated to suppress both IRF7 and STAT2 (Liu et al., 2021). This can be expected to interfere with the cancer-protective effects of BRCA1 as described above. Cancers associated with impaired BRCA1 activity include breast, uterine, and ovarian cancer in women; prostate and breast cancer in men; and a modest increase in pancreatic cancer for both men and women (Cancer risk and BRCA1 gene, 2021).

Reduced BRCA1 expression is linked to both cancer and neurodegeneration. BRCA1 is a well-known breast cancer susceptibility gene. BRCA1 inhibits breast cancer cell proliferation through activation of SIRT1 and subsequent suppression of the androgen receptor (Zhang et al., 2016). In a study conducted by Suberbielle et al. (2015), reduced levels of BRCA1 were found in the brains of Alzheimer's patients. Furthermore, experiments with knocking down neuronal BRCA1 in the dentate gyrus of mice showed that DNA double-strand breaks were increased, along with neuronal shrinkage and impairments in synaptic plasticity, learning and memory.

Analysis detailed in a recent case study on a patient diagnosed with a rare form of lymphoma called angioimmunoblastic T cell lymphoma provided strong evidence for unexpected rapid progression of lymphomatous lesions after administration of the BNT162b2 mRNA booster shot (Goldman et al., 2021). Comparisons of detailed metrics for hypermetabolic lesions conducted immediately before and 21 days after the vaccine booster revealed a five-fold increase after the vaccine, with the post-booster test revealing a 2-fold higher activity level in the right armpit compared to the left one. The vaccine had been injected on the right side. It is worth pointing out in this regard that lymphoid malignancies have been associated with suppression of TRAIL-R1 (MacFarlane et al., 2005).

Over the last three decades, the mRNA technological platform aimed to develop effective and safe nucleic acid therapeutic tools is said to have overcome serious obstacles on the coded product instability, the overwhelming innate immunogenicity, and on the delivery methodologies (Pardi et al., 2018). One of the major success stories of mRNA use as a genetic vaccination tool is on the introduction of robust immunity against cancer (Van Lint et al., 2015). In addition, the potential of mRNAs to restore or replace various types of proteins in cases of rare genetic metabolic disorders like Fabry disease has offered great potential therapeutic alternatives where no other medication has proved to be successful (Martini and Guey, 2019). However, in the case of mRNA use as genetic vaccines against infectious diseases, the preliminary safety investigations seemed to be premature for a world-wide use in the general population (Pardi et al., 2018; Doulberis et al., 2021).

Although there are essential epitopes on other SARS-CoV-2 proteins where an antibody response could have provided essential immunogenicity, well known from SARS-CoV-1 (Gordon et al., 2020), the primary goal of the developers of the SARS-CoV-2 mRNA vaccines was to design a vaccine that could induce a robust antibody response exclusively to the spike glycoprotein. Such antibodies, especially IgA in the nasopharynx, should cause the invading viruses to be quickly cleared before they could invade host cells, thus arresting the disease process early on. As stated succinctly by Kaczmarek et al. (2021):

“The rationale behind vaccination is to provide every vaccinated person with protection against the SARS‐CoV‐2 virus. This protection is achieved by stimulating the immune system to produce antibodies against the virus and to develop lymphocytes that will retain memory and the ability to fight off the virus for a long time.” However, since vaccination is given parenterally, IgG is the principal antibody class that is raised against the SARS-CoV-2 spike glycoprotein, not IgA (Wisnewski et al., 2021).

Vaccines generally depend upon adjuvants such as aluminum and squalene to provoke immune cells to migrate to the injection site immediately after vaccination. In the history of mRNA vaccine development, it was initially hoped that the mRNA itself could serve as its own adjuvant. This is because human cells recognize viral RNA as foreign, and this leads to upregulation of type I IFNs, mediated via toll like receptors such as TLR3, TLR7 and TLR8 (Karik ó et al., 2005).

However, with time it became clear that there were problems with this approach, both because the intense reaction could cause flu-like symptoms and because IFN-α could launch a cascade response that would lead to the breakdown of the mRNA before it could produce adequate amounts of SARS-CoV-2 spike glycoprotein to induce an immune response (de Beuckelaer et al., 2016). A breakthrough came when it was discovered experimentally that the mRNA coding for the spike protein could be modified in specific ways that would essentially fool the human cells into recognizing it as harmless human RNA. A seminal paper by Karikó et al. (2005) demonstrated through a series of in vitro experiments that a simple modification to the mRNA such that all uridines were replaced with pseudouridine could dramatically reduce innate immune activation against exogenous mRNA. Andries et al. (2015) later discovered that 1-methylpseudouridine as a replacement for uridine was even more effective than pseudouridine and could essentially abolish the TLR response to the mRNA, preventing the activation of blood-derived dendritic cells. This modification is applied in both the mRNA vaccines on the market (Park et al., 2021).

Regarding SARS-CoV-2, relevant studies reveal overwhelming similarities between SARS-CoV-2 pG4s, including in RNA coding for SARS-CoV-2 spike glycoprotein, and those sequenced in the human transcriptome (Zhang et al., 2020). Thus, it can be inferred that synthetic mRNAs in vaccines carrying more pG4 structures in their coding sequence for SARS-CoV-2 spike glycoprotein will amplify and compound the potential post-transcriptional disorganization due to G4-enriched RNA during natural SARS-CoV-2 infection.

 

 

 

Edited by Highmark
Link to comment
Share on other sites

 

Spike in the blood of children with vax myocarditis.  Was not supposed to be possible.

Fact check:  The spike goes everywhere its not supposed to.

Another conspiracy theory.

 

 

Professor Retsef Levi, MIT Expert in Analytics, Risk Management, Health Systems, Food & Agriculture Systems, Manufacturing & Supply Chain Management

 

 

 

Link to comment
Share on other sites

  • Platinum Contributing Member

Carefully read thru the NIH link I posted.   Honestly its quite alarming.

15. Considerations regarding the Vaccine Adverse Event Reporting System (VAERS)

The Food and Drug Administration's Vaccine Adverse Event Reporting System (VAERS) is an imperfect but valuable resource for identifying potential adverse reactions to vaccines. Established through collaboration between the CDC and FDA, VAERS is “a national early warning system to detect possible safety problems in U.S.-licensed vaccines.” According to the CDC it is “especially useful for detecting unusual or unexpected patterns of adverse event reporting that might indicate a possible safety problem with a vaccine.” (https://vaers.hhs.gov/about.html) Even the CDC recognizes that adverse events reported to VAERS represent “only a small fraction of actual adverse events” (Vaers Home, 2021). A widely cited report noted that fewer than 1% of all vaccine-related adverse events are reported to VAERS (Lazarus et al., 2010). That assertion, though, has no citation so the basis for the claim is unclear. Rose (2021) published a much more sophisticated analysis of VAERS data to offer an estimate of underreporting by a factor of 31 (Rose, 2021). While it is impossible to determine underreporting with precision, the available evidence is that underreporting very strongly characterizes the VAERS data. The information presented below should be understood in that light.

In mining VAERS for ‘signals’ that might indicate adverse reactions (AEs) to mRNA vaccinations, we acknowledge that no report to VAERS establishes a causal link with the vaccination. That said, the possibility of a causal relationship is strengthened through both the causal pathways we have described in this paper, and the strong temporal association between injections and reported AEs. Nearly 60% of all mRNA-injection-related -AEs have happened within 48 h of injection (https://medalerts.org/vaersdb/findfield.php?TABLE=ON&GROUP1=ONS&EVENTS=ON&VAX=COVID19&VAXTYPES=COVID-19&STATE=NOTFR).

Two important cautions regarding analysis of VAERS data should be noted. The first is that, in addition to health care professionals submitting reports, VAERS is open for public submissions as well. Members of the public may lack the skills necessary to evaluate a symptom appropriately to determine if it merits a VAERS entry. A second caution is that public access also allows for the possibility of anti-vaccination activists to populate VAERS with false reports to exaggerate the appearance of AE risk.

An interim analysis of deaths cited previously found that health service employees were the VAERS reporter in 67% of reports analyzed (Nandha and Singh, 2012), suggesting a large portion of VAERS reports are submitted by medical professionals and not the public. This finding also belies the notion that anti-vaccination activists are filing an excessive number of egregious reports of vaccine injury.

All of the data reported in this section were obtained by querying the online resource, http://wonder.cdc.gov/vaers.html. Over the 31-year history of VAERS, up to February 3, 2022, there were a total of 10,321 deaths reported as a “symptom” in association with any vaccine, and 8,241 (80%) of those deaths were linked to COVID-19 vaccines. Importantly, only 14% of COVID-19 VAERS-reported deaths as of June 2021 could have vaccination ruled out as a cause (McLachlan et al., 2021). This strongly suggests that these unprecedented vaccines exhibit unusual mechanisms of toxicity that go well beyond what is seen with more traditional vaccines.

We decided that a reasonable way to characterize the significance of adverse events linked to COVID-19 vaccines was to focus on events received in the year 2021, and to compare the counts in the “SYMPTOM” field for the events associated with COVID-19 vaccines to the total counts for that same symptom for all vaccines over that same year. In total, there were 737,689 events reported in VAERS for COVID-19 vaccines in 2021, representing a shocking 93% of the total cases reported for any vaccine that same year. While we recognize that some of the COVID-19 vaccines are based on DNA vector technology rather than mRNA technology, this class (i.e., the Johnson & Johnson vaccine) represents less than 9% of the COVID-19 reports, and its reaction profile is surely much more similar to that of the mRNA vaccines than to that of all the other vaccines.

The total number of adverse event reports for COVID-19 injections is far greater than the cumulative number of annual vaccine adverse event reports combined in all prior years, as shown by Rose (2021). The influenza vaccine is a good one to compare against. Given that the protocol for the mRNA vaccines requires two doses, and that many were persuaded to receive a booster shot as well, it is clear that the sheer number of COVID-19 vaccines administered is large compared to other vaccines. We can actually estimate what percent of the adverse reactions in 2021 would be expected to be associated with COVID-19 vaccines if the likelihood of an adverse reaction were similar to that of the influenza vaccine. The CDC tells us that 52% of the US population received a flu shot in 2021. The USAFacts web site provides percentages of the US population that received one, two or three doses of COVID-19 vaccines as a function of time (see: https://usafacts.org/visualizations/covid-vaccine-tracker-states/). The numbers they report for December 30, 2021 are 73% single dose, 62% fully vaccinated, and 21% boosted. This tallies up to 156% of the population as the total number of COVID-19 vaccines administered. This is exactly three times as many COVID vaccines as flu shots.

From VAERS, one can easily obtain the total number of adverse reactions associated with COVID-19 vaccines, the total number associated with flu vaccines, and the total number associated with all vaccines, for the US-restricted VAERS data from 2021. These come out as: COVID-19: 737,587, FLU: 9,124, and ALL: 792,935. First, we can observe that 93% of all the events reported were linked to COVID-19 vaccines. If we remove the counts for COVID-19 and replace them with three times the counts for flu (since COVID-19 vaccines were administered three times as often), we find that COVID-19 should have accounted for 32.6% of all the events, which can be compared with the actual result, which is 93%. We can also conclude that any event that shows up more than 93% as often for COVID-19 vaccines as for all other vaccines is especially significant as a potential toxic effect of these vaccines. Finally, we find that there are 27 times as many reports for COVID-19 vaccines as would be expected if its adverse reactions were comparable to those from the flu vaccine.

15.1. VAERS data indicative of nerve damage and vagus nerve involvement

Table 1 lists a number of symptoms in VAERS that can be associated with inflammation of or damage to various major nerves of the body, particularly those in the head. Strikingly, COVID-19 vaccines represented from 96 to 98% of the reports in the year 2021 related to each of these debilitating conditions. There were nearly 100,000 cases of nausea or vomiting, which are common symptoms of vagus nerve stimulation or damage (Babic and Browning, 2014). 14,701 cases of syncope linked to COVID-19 vaccines represented 96.3% of all cases of syncope, a well-established feature of vagus nerve dysfunction (Fenton et al., 2000). There were 3,657 cases of anosmia (loss of smell), clearly demonstrating that the SARS-CoV-2 spike glycoprotein from the injection in the arm was reaching the olfactory nerve. Dyspnea (shortness of breath) is related to vagus nerve impairment in the lungs, and there were 39,551 cases of dyspnea connected to COVID-19 vaccines in 2021.

 

 

Edited by Highmark
Link to comment
Share on other sites

A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.
 

Seems like this is highlighting the positive role the vaccine plays.  :bc:

Neal

Link to comment
Share on other sites

5 minutes ago, NaturallyAspirated said:

A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.
 

Seems like this is highlighting the positive role the vaccine plays.  :bc:

Neal

Sticking with the kool-aid I see.

 

:lol:

  • Haha 2
Link to comment
Share on other sites

  • Platinum Contributing Member
53 minutes ago, NaturallyAspirated said:

A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.
 

Seems like this is highlighting the positive role the vaccine plays.  :bc:

Neal

I don't see anything positive about weakening your immune response to cancer

  • Like 2
Link to comment
Share on other sites

8 hours ago, Highmark said:

Lets not forget the mRNA jab makes the bodies immune system act like it had COVID.

Both the article and the study provide some very interesting reading on what the virus and mRNA vaccine do to the immune system. 

https://slate.com/technology/2023/01/immunity-covid-research-airborne-aids-debunk.html

When the immune system goes awry, it’s bad news. A wonky immune system might mean that you’re more likely to catch colds and flus, or be infected by other pathogens—and less likely to shake them off. It might mean that your body fails to detect and destroy growing tumors. It might even mean that the body turns against itself, leading to chronic autoimmune conditions like arthritis or Crohn’s disease. The fallout of immune system dysfunction on the human body is widespread and unpredictable—which is why it was so concerning in 2020 when evidence began to amass that COVID-19 seemed to be disrupting human immunology. So much so, in fact, that John Wherry, director of the Penn Medicine Immune Health Institute, summed it up this way to Kaiser Health News: “COVID is deranging the immune system.”

Most of the early immunological evidence—the evidence that Wherry was referring to—came from patients who died or suffered severe COVID. Now, three years of infections and immunizations later, severe COVID is getting mercifully less common; a brush with the virus may well feel unremarkable. And a new idea about how COVID can affect immunity has emerged: that even mild infections routinely cause consequential damage to our bodies’ defenses. This quiet degradation was memorably termed “immunity theft” by one evolutionary biologist speculating on why this fall’s respiratory virus season seemed more severe than usual.

There are plenty of reasons to not want to get COVID over and over, but the prospect of an increasingly damaged immune system is a particularly compelling one. Throughout the pandemic, scientific evidence has mounted that mild COVID infections may be doing something to our immune systems—prompting many on social media to hyperbolically describe COVID as “airborne AIDS.” But the lessons that scientists are drawing from their research are nuanced—and the larger picture says more about the sturdiness of our collective immunity than anything else.

There are a few ways scientists can probe COVID’s impact on immune systems. One is to investigate how well the immune system can rally against a second go-round with SARS-CoV-2. At the start of the pandemic, Shane Crotty, of the La Jolla Institute of Immunology, published some of the first papers looking at the immune response to COVID. “There was a lot of concern about how strange it might look,” he said. But really, “it looks as we would largely expect for a respiratory viral infection.” Antibodies recognize and subdue the virus, while immune memory cells linger about, ready to gear up for the next infection. A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012513/

Vaccination has also been demonstrated to suppress both IRF7 and STAT2 (Liu et al., 2021). This can be expected to interfere with the cancer-protective effects of BRCA1 as described above. Cancers associated with impaired BRCA1 activity include breast, uterine, and ovarian cancer in women; prostate and breast cancer in men; and a modest increase in pancreatic cancer for both men and women (Cancer risk and BRCA1 gene, 2021).

Reduced BRCA1 expression is linked to both cancer and neurodegeneration. BRCA1 is a well-known breast cancer susceptibility gene. BRCA1 inhibits breast cancer cell proliferation through activation of SIRT1 and subsequent suppression of the androgen receptor (Zhang et al., 2016). In a study conducted by Suberbielle et al. (2015), reduced levels of BRCA1 were found in the brains of Alzheimer's patients. Furthermore, experiments with knocking down neuronal BRCA1 in the dentate gyrus of mice showed that DNA double-strand breaks were increased, along with neuronal shrinkage and impairments in synaptic plasticity, learning and memory.

Analysis detailed in a recent case study on a patient diagnosed with a rare form of lymphoma called angioimmunoblastic T cell lymphoma provided strong evidence for unexpected rapid progression of lymphomatous lesions after administration of the BNT162b2 mRNA booster shot (Goldman et al., 2021). Comparisons of detailed metrics for hypermetabolic lesions conducted immediately before and 21 days after the vaccine booster revealed a five-fold increase after the vaccine, with the post-booster test revealing a 2-fold higher activity level in the right armpit compared to the left one. The vaccine had been injected on the right side. It is worth pointing out in this regard that lymphoid malignancies have been associated with suppression of TRAIL-R1 (MacFarlane et al., 2005).

Over the last three decades, the mRNA technological platform aimed to develop effective and safe nucleic acid therapeutic tools is said to have overcome serious obstacles on the coded product instability, the overwhelming innate immunogenicity, and on the delivery methodologies (Pardi et al., 2018). One of the major success stories of mRNA use as a genetic vaccination tool is on the introduction of robust immunity against cancer (Van Lint et al., 2015). In addition, the potential of mRNAs to restore or replace various types of proteins in cases of rare genetic metabolic disorders like Fabry disease has offered great potential therapeutic alternatives where no other medication has proved to be successful (Martini and Guey, 2019). However, in the case of mRNA use as genetic vaccines against infectious diseases, the preliminary safety investigations seemed to be premature for a world-wide use in the general population (Pardi et al., 2018; Doulberis et al., 2021).

Although there are essential epitopes on other SARS-CoV-2 proteins where an antibody response could have provided essential immunogenicity, well known from SARS-CoV-1 (Gordon et al., 2020), the primary goal of the developers of the SARS-CoV-2 mRNA vaccines was to design a vaccine that could induce a robust antibody response exclusively to the spike glycoprotein. Such antibodies, especially IgA in the nasopharynx, should cause the invading viruses to be quickly cleared before they could invade host cells, thus arresting the disease process early on. As stated succinctly by Kaczmarek et al. (2021):

“The rationale behind vaccination is to provide every vaccinated person with protection against the SARS‐CoV‐2 virus. This protection is achieved by stimulating the immune system to produce antibodies against the virus and to develop lymphocytes that will retain memory and the ability to fight off the virus for a long time.” However, since vaccination is given parenterally, IgG is the principal antibody class that is raised against the SARS-CoV-2 spike glycoprotein, not IgA (Wisnewski et al., 2021).

Vaccines generally depend upon adjuvants such as aluminum and squalene to provoke immune cells to migrate to the injection site immediately after vaccination. In the history of mRNA vaccine development, it was initially hoped that the mRNA itself could serve as its own adjuvant. This is because human cells recognize viral RNA as foreign, and this leads to upregulation of type I IFNs, mediated via toll like receptors such as TLR3, TLR7 and TLR8 (Karik ó et al., 2005).

However, with time it became clear that there were problems with this approach, both because the intense reaction could cause flu-like symptoms and because IFN-α could launch a cascade response that would lead to the breakdown of the mRNA before it could produce adequate amounts of SARS-CoV-2 spike glycoprotein to induce an immune response (de Beuckelaer et al., 2016). A breakthrough came when it was discovered experimentally that the mRNA coding for the spike protein could be modified in specific ways that would essentially fool the human cells into recognizing it as harmless human RNA. A seminal paper by Karikó et al. (2005) demonstrated through a series of in vitro experiments that a simple modification to the mRNA such that all uridines were replaced with pseudouridine could dramatically reduce innate immune activation against exogenous mRNA. Andries et al. (2015) later discovered that 1-methylpseudouridine as a replacement for uridine was even more effective than pseudouridine and could essentially abolish the TLR response to the mRNA, preventing the activation of blood-derived dendritic cells. This modification is applied in both the mRNA vaccines on the market (Park et al., 2021).

Regarding SARS-CoV-2, relevant studies reveal overwhelming similarities between SARS-CoV-2 pG4s, including in RNA coding for SARS-CoV-2 spike glycoprotein, and those sequenced in the human transcriptome (Zhang et al., 2020). Thus, it can be inferred that synthetic mRNAs in vaccines carrying more pG4 structures in their coding sequence for SARS-CoV-2 spike glycoprotein will amplify and compound the potential post-transcriptional disorganization due to G4-enriched RNA during natural SARS-CoV-2 infection.

 

 

 



Guess covid isn't so 'mild' after all. Nowhere in the slate article does it make any mention of vaccines, rather all complications stemming from mild to severe covid infections, yet you made sure to infer equality in your very first sentence. Interesting article, nonetheless.

I see what you did though, connecting vaccines to the slate article via the paper co-authored by Peter McCullough. 9_9

https://osf.io/m58yh/


AC will be especially saddened, but doubt he ever read it.

"We’re not seeing evidence that this one virus has changed our immune system’s ability to keep us healthy on a large scale. There are 7 billion people on the planet who are doing fairly well. And we’re not seeing opportunistic infections, we’re not seeing huge increases in cancers that need immune surveillance, we’re just not seeing the kinds of things that we saw in other settings where the immune system was compromised, or dysregulated, because of an infectious disease, or because of toxins, or because of radiation, that we’ve seen in a variety of human events over the past 100 years."

 

 

Link to comment
Share on other sites

  • Platinum Contributing Member
13 hours ago, NaturallyAspirated said:

A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.
 

Seems like this is highlighting the positive role the vaccine plays.  :bc:

Neal

Very possible with concerns to seriousness of illness from the infection.   Any comments on the rest of the post and the possible negative consequences to the recipients immune system?

Link to comment
Share on other sites

19 hours ago, Highmark said:

Lets not forget the mRNA jab makes the bodies immune system act like it had COVID.

Both the article and the study provide some very interesting reading on what the virus and mRNA vaccine do to the immune system. 

https://slate.com/technology/2023/01/immunity-covid-research-airborne-aids-debunk.html

When the immune system goes awry, it’s bad news. A wonky immune system might mean that you’re more likely to catch colds and flus, or be infected by other pathogens—and less likely to shake them off. It might mean that your body fails to detect and destroy growing tumors. It might even mean that the body turns against itself, leading to chronic autoimmune conditions like arthritis or Crohn’s disease. The fallout of immune system dysfunction on the human body is widespread and unpredictable—which is why it was so concerning in 2020 when evidence began to amass that COVID-19 seemed to be disrupting human immunology. So much so, in fact, that John Wherry, director of the Penn Medicine Immune Health Institute, summed it up this way to Kaiser Health News: “COVID is deranging the immune system.”

Most of the early immunological evidence—the evidence that Wherry was referring to—came from patients who died or suffered severe COVID. Now, three years of infections and immunizations later, severe COVID is getting mercifully less common; a brush with the virus may well feel unremarkable. And a new idea about how COVID can affect immunity has emerged: that even mild infections routinely cause consequential damage to our bodies’ defenses. This quiet degradation was memorably termed “immunity theft” by one evolutionary biologist speculating on why this fall’s respiratory virus season seemed more severe than usual.

There are plenty of reasons to not want to get COVID over and over, but the prospect of an increasingly damaged immune system is a particularly compelling one. Throughout the pandemic, scientific evidence has mounted that mild COVID infections may be doing something to our immune systems—prompting many on social media to hyperbolically describe COVID as “airborne AIDS.” But the lessons that scientists are drawing from their research are nuanced—and the larger picture says more about the sturdiness of our collective immunity than anything else.

There are a few ways scientists can probe COVID’s impact on immune systems. One is to investigate how well the immune system can rally against a second go-round with SARS-CoV-2. At the start of the pandemic, Shane Crotty, of the La Jolla Institute of Immunology, published some of the first papers looking at the immune response to COVID. “There was a lot of concern about how strange it might look,” he said. But really, “it looks as we would largely expect for a respiratory viral infection.” Antibodies recognize and subdue the virus, while immune memory cells linger about, ready to gear up for the next infection. A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012513/

Vaccination has also been demonstrated to suppress both IRF7 and STAT2 (Liu et al., 2021). This can be expected to interfere with the cancer-protective effects of BRCA1 as described above. Cancers associated with impaired BRCA1 activity include breast, uterine, and ovarian cancer in women; prostate and breast cancer in men; and a modest increase in pancreatic cancer for both men and women (Cancer risk and BRCA1 gene, 2021).

Reduced BRCA1 expression is linked to both cancer and neurodegeneration. BRCA1 is a well-known breast cancer susceptibility gene. BRCA1 inhibits breast cancer cell proliferation through activation of SIRT1 and subsequent suppression of the androgen receptor (Zhang et al., 2016). In a study conducted by Suberbielle et al. (2015), reduced levels of BRCA1 were found in the brains of Alzheimer's patients. Furthermore, experiments with knocking down neuronal BRCA1 in the dentate gyrus of mice showed that DNA double-strand breaks were increased, along with neuronal shrinkage and impairments in synaptic plasticity, learning and memory.

Analysis detailed in a recent case study on a patient diagnosed with a rare form of lymphoma called angioimmunoblastic T cell lymphoma provided strong evidence for unexpected rapid progression of lymphomatous lesions after administration of the BNT162b2 mRNA booster shot (Goldman et al., 2021). Comparisons of detailed metrics for hypermetabolic lesions conducted immediately before and 21 days after the vaccine booster revealed a five-fold increase after the vaccine, with the post-booster test revealing a 2-fold higher activity level in the right armpit compared to the left one. The vaccine had been injected on the right side. It is worth pointing out in this regard that lymphoid malignancies have been associated with suppression of TRAIL-R1 (MacFarlane et al., 2005).

Over the last three decades, the mRNA technological platform aimed to develop effective and safe nucleic acid therapeutic tools is said to have overcome serious obstacles on the coded product instability, the overwhelming innate immunogenicity, and on the delivery methodologies (Pardi et al., 2018). One of the major success stories of mRNA use as a genetic vaccination tool is on the introduction of robust immunity against cancer (Van Lint et al., 2015). In addition, the potential of mRNAs to restore or replace various types of proteins in cases of rare genetic metabolic disorders like Fabry disease has offered great potential therapeutic alternatives where no other medication has proved to be successful (Martini and Guey, 2019). However, in the case of mRNA use as genetic vaccines against infectious diseases, the preliminary safety investigations seemed to be premature for a world-wide use in the general population (Pardi et al., 2018; Doulberis et al., 2021).

Although there are essential epitopes on other SARS-CoV-2 proteins where an antibody response could have provided essential immunogenicity, well known from SARS-CoV-1 (Gordon et al., 2020), the primary goal of the developers of the SARS-CoV-2 mRNA vaccines was to design a vaccine that could induce a robust antibody response exclusively to the spike glycoprotein. Such antibodies, especially IgA in the nasopharynx, should cause the invading viruses to be quickly cleared before they could invade host cells, thus arresting the disease process early on. As stated succinctly by Kaczmarek et al. (2021):

“The rationale behind vaccination is to provide every vaccinated person with protection against the SARS‐CoV‐2 virus. This protection is achieved by stimulating the immune system to produce antibodies against the virus and to develop lymphocytes that will retain memory and the ability to fight off the virus for a long time.” However, since vaccination is given parenterally, IgG is the principal antibody class that is raised against the SARS-CoV-2 spike glycoprotein, not IgA (Wisnewski et al., 2021).

Vaccines generally depend upon adjuvants such as aluminum and squalene to provoke immune cells to migrate to the injection site immediately after vaccination. In the history of mRNA vaccine development, it was initially hoped that the mRNA itself could serve as its own adjuvant. This is because human cells recognize viral RNA as foreign, and this leads to upregulation of type I IFNs, mediated via toll like receptors such as TLR3, TLR7 and TLR8 (Karik ó et al., 2005).

However, with time it became clear that there were problems with this approach, both because the intense reaction could cause flu-like symptoms and because IFN-α could launch a cascade response that would lead to the breakdown of the mRNA before it could produce adequate amounts of SARS-CoV-2 spike glycoprotein to induce an immune response (de Beuckelaer et al., 2016). A breakthrough came when it was discovered experimentally that the mRNA coding for the spike protein could be modified in specific ways that would essentially fool the human cells into recognizing it as harmless human RNA. A seminal paper by Karikó et al. (2005) demonstrated through a series of in vitro experiments that a simple modification to the mRNA such that all uridines were replaced with pseudouridine could dramatically reduce innate immune activation against exogenous mRNA. Andries et al. (2015) later discovered that 1-methylpseudouridine as a replacement for uridine was even more effective than pseudouridine and could essentially abolish the TLR response to the mRNA, preventing the activation of blood-derived dendritic cells. This modification is applied in both the mRNA vaccines on the market (Park et al., 2021).

Regarding SARS-CoV-2, relevant studies reveal overwhelming similarities between SARS-CoV-2 pG4s, including in RNA coding for SARS-CoV-2 spike glycoprotein, and those sequenced in the human transcriptome (Zhang et al., 2020). Thus, it can be inferred that synthetic mRNAs in vaccines carrying more pG4 structures in their coding sequence for SARS-CoV-2 spike glycoprotein will amplify and compound the potential post-transcriptional disorganization due to G4-enriched RNA during natural SARS-CoV-2 infection.

 

 

 

Thread title says “our immune system”? So you got your shots?

Link to comment
Share on other sites

  • Platinum Contributing Member
10 hours ago, akvanden said:



Guess covid isn't so 'mild' after all. Nowhere in the slate article does it make any mention of vaccines, rather all complications stemming from mild to severe covid infections, yet you made sure to infer equality in your very first sentence. Interesting article, nonetheless.

I see what you did though, connecting vaccines to the slate article via the paper co-authored by Peter McCullough. 9_9

https://osf.io/m58yh/


AC will be especially saddened, but doubt he ever read it.

"We’re not seeing evidence that this one virus has changed our immune system’s ability to keep us healthy on a large scale. There are 7 billion people on the planet who are doing fairly well. And we’re not seeing opportunistic infections, we’re not seeing huge increases in cancers that need immune surveillance, we’re just not seeing the kinds of things that we saw in other settings where the immune system was compromised, or dysregulated, because of an infectious disease, or because of toxins, or because of radiation, that we’ve seen in a variety of human events over the past 100 years."

 

 

Co-authored and yet published by the NIH.  With how these "vaccines" work any concerns on what the virus does to the immune system OBVIOUSLY should be of equal concern with what the mRNA jab does to the immune system.   You think I'm trying to do a big gotcha moment when it literally was the entire premise of the thread.  Peter McCullough was not the only author of the study.

From the first paragraph.  This is not concerning to you in the slightest?

In this paper, we present evidence that vaccination induces a profound impairment in type I interferon signaling, which has diverse adverse consequences to human health. Immune cells that have taken up the vaccine nanoparticles release into circulation large numbers of exosomes containing spike protein along with critical microRNAs that induce a signaling response in recipient cells at distant sites. We also identify potential profound disturbances in regulatory control of protein synthesis and cancer surveillance. These disturbances potentially have a causal link to neurodegenerative disease, myocarditis, immune thrombocytopenia, Bell's palsy, liver disease, impaired adaptive immunity, impaired DNA damage response and tumorigenesis. We show evidence from the VAERS database supporting our hypothesis. We believe a comprehensive risk/benefit assessment of the mRNA vaccines questions them as positive contributors to public health.

  

Link to comment
Share on other sites

  • Platinum Contributing Member
5 minutes ago, Mainecat said:

Thread title says “our immune system”? So you got your shots?

My wife and kids did....is that close enough for me to be concerned?

Link to comment
Share on other sites

  • Platinum Contributing Member
5 minutes ago, Mainecat said:

Sure it is. Just seems odd you didn’t choose immunization but your family did.

Wife was a requirement of her job...she didn't want to get it.   Both my boys are adults....I was clear with them about my concerns as well as the potential benefit of getting the vaccine....they made that choice on their own.   I don't think my youngest would have if it weren't for a vacation that required it at the time. 

  • Like 1
Link to comment
Share on other sites

1 hour ago, Highmark said:

Very possible with concerns to seriousness of illness from the infection.   Any comments on the rest of the post and the possible negative consequences to the recipients immune system?

Sure, after all the comments on this portion and how beneficial the vaccine is to the immune system and the fighting of COVID.  So far it's gotten a leaving alone.

Neal

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Trying to pay the bills, lol

×
×
  • Create New...