Jump to content
Check your account email address ×

Deniers???


Recommended Posts

  • Gold Member
2 minutes ago, XCR1250 said:

Wonder what caused the Ice Age ice to melt? Must have been from all the EV's charging.

Likely warmth melted and is melting the ice from the Ice age.

  • Like 1
Link to comment
Share on other sites

  • Gold Member
14 minutes ago, XCR1250 said:

Now you're talking:goodpost:

Then the sun shines on the earth.  Radiates heat back into space.  C02 will trap some of that heat that earth tries radiate into space.  That CO2 will radiate some of that heat it traps back to earth causing warming.  With the Rise of CO2 in the atmosphere the temp warms on earth melting ice.  C02 in the atmosphere come from natural sources and man’s activity which both the cause of increases in earths temp melting ice.  More CO2 in the atmosphere the warmer the climate.

Edited by BOHICA
  • Like 1
Link to comment
Share on other sites

  • Gold Member
7 minutes ago, XCR1250 said:

And man's activity caused all 5 Ice Age melts, gotcha.

Nope.  Does man share responsibility some of the cause of the current warming and Ice melting in the Arctic?  Absolutely.  Higher CO2 concentrations cause the planets temp to increase.  Proven fact.  It what caused previous ice ages to end was increase in atmospheric CO2 concentration increases

Edited by BOHICA
  • Haha 1
Link to comment
Share on other sites

1 minute ago, BOHICA said:

Nope.  Is man share responsibility some of the cause of the current warming and Ice melting in the Arctic?  Absolutely.  Higher CO2 concentrations cause the planets temp to increase.  Proven fact.  It what caused previous ice ages to end was increase in atmospheric CO2 concentration increases

No it's not...temperature rose then CO2 followed. 

Link to comment
Share on other sites

Far-Drifting Antarctic Icebergs Are Trigger of Ice Ages, Scientists Say

BY EARTH INSTITUTE |JANUARY 13, 2021

Large numbers of icebergs drifting unusually far from Antarctica before melting into ocean waters have been key to initiating ice ages of the past, says a new study. According to the study, the icebergs introduced freshwater into certain areas of the ocean that triggered a series of chain reactions, culminating with Earth plunging into prolonged periods of cold. The findings were published this week in the journal Nature.

Scientists have long agreed that repeated ice ages over millions of years have been paced by cyclic changes in Earth’s orbit around the sun. These cycles increase or decrease the amount of solar radiation that reaches the planet’s surface. However, the changes are relatively small, so it has been a mystery how they bring such dramatic shifts in climate.

In the new study, scientists from more than a dozen institutions propose that when Earth’s orbit is just right, icebergs broken off from the coasts of Antarctica drift further and further away from the continent before ultimately melting. This, in turn, shifts huge volumes of freshwater away from the Southern Ocean and into the Atlantic. Then, as the Southern Ocean gets saltier and the North Atlantic gets fresher, global ocean circulation patterns change dramatically. This causes the ocean to pull increased amounts of carbon dioxide from the atmosphere, reducing the so-called greenhouse effect, and pushing Earth into ice-age conditions.

icebergs breaking off of antarctica

Icebergs broken off and drifting far from the coast of Antarctica are key to the initiation of ice ages, says a new study. (Pierre Dutrieux/Lamont-Doherty Earth Observatory)

The scientists used multiple techniques to reconstruct past conditions. These included identifying tiny fragments of rock that Antarctic glaciers picked up as they scraped seaward over the continent’s surface. When the ice reached the coast, icebergs calved off, and the rocky debris was rafted along before getting dropped to the bottom as the icebergs melted.

The scientists based their conclusions on an ocean-bottom sediment core drilled in deep water 800 kilometers off the southern tip of Africa. The core was brought up by the International Ocean Discovery Program Expedition 361 in 2016. Analysis showed it contained layers of ice-rafted debris from Antarctica. “This is way far north for Antarctic icebergs to travel,” said study coauthor Sidney Hemming, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory. “It’s also where several key factors in ocean currents intersect. The study makes a powerful case that there is a series of factors all connected to the ice ages.” Hemming was co-chief scientist on the cruise.

The recovered sediments, encompassing more than 1.6 million years of history, contained one of the longest detailed records of Antarctic ice-rafted debris ever collected by researchers. Using climate-model simulations, the team determined that huge volumes of freshwater must have been transported by the icebergs. They further found that each layer of ice-rafted debris consistently presaged subsequent changes in deep ocean circulation. They reconstructed the changes from the chemistry of tiny shell-building creatures called foraminifera, also found in the sediments .

Researchers examine a sediment core

Researchers examine a sediment core taken off southern Africa. (Courtesy Sidney Hemming/Lamont-Doherty Earth Observatory)

“We were astonished to find that this lead-lag relationship was present during the onset of every ice age for the last 1.6 million years,” said the study’s lead author, Aidan Starr of the United Kingdom’s Cardiff University. “Such a leading role for the Southern Ocean and Antarctica in global climate has been speculated, but seeing it so clearly in geological evidence was very exciting.”

“Our results provide the missing link into how Antarctica and the Southern Ocean responded to the natural rhythms of the climate system associated with our orbit around the sun,” said coauthor Ian Hall of Cardiff University. Hall served along with Hemming as the cruise’s co-chief scientist..

Over the past 1.5 million years, Earth has plunged into at least 25 ice ages documented by scientists. The planet  is currently experiencing an interglacial period, in which temperatures are warmer. In the natural course of things, it would eventually dip into another ice age, starting thousands of years from now. But the study’s authors suggest that due to rising temperatures resulting from human emissions of greenhouse gases, the cycle may be disrupted; the Southern Ocean will likely become too warm for icebergs to travel far enough to trigger the necessary changes in ocean circulation, they say.

Hall says the study may help scientists understand how the climate may respond to human interference in the future. “As we observe an increase in the mass loss from [Antarctica] and iceberg activity in the Southern Ocean, [our] study emphasizes the importance of understanding iceberg trajectories and melt patterns in developing the most robust predictions of their future impact,” he said.

Adapted from a press release by Cardiff University.

Link to comment
Share on other sites

  • Gold Member
8 minutes ago, SkisNH said:

There were glaciers in PA, NY, CT, MA, NH and Maine....where did they go?

Temp rise.  Atmospheric CO2 concentrations increase causing more increases in temperatures that melted the ice

Edited by BOHICA
Link to comment
Share on other sites

  • Gold Member
4 minutes ago, SkisNH said:

No it's not...temperature rose then CO2 followed. 

Not the case in post industrial revolution.  Atmospheric CO2 concentration increases precede increase in temperatures thus far.

Link to comment
Share on other sites

  • Gold Member
13 minutes ago, XCR1250 said:

Far-Drifting Antarctic Icebergs Are Trigger of Ice Ages, Scientists Say

BY EARTH INSTITUTE |JANUARY 13, 2021

Large numbers of icebergs drifting unusually far from Antarctica before melting into ocean waters have been key to initiating ice ages of the past, says a new study. According to the study, the icebergs introduced freshwater into certain areas of the ocean that triggered a series of chain reactions, culminating with Earth plunging into prolonged periods of cold. The findings were published this week in the journal Nature.

Scientists have long agreed that repeated ice ages over millions of years have been paced by cyclic changes in Earth’s orbit around the sun. These cycles increase or decrease the amount of solar radiation that reaches the planet’s surface. However, the changes are relatively small, so it has been a mystery how they bring such dramatic shifts in climate.

In the new study, scientists from more than a dozen institutions propose that when Earth’s orbit is just right, icebergs broken off from the coasts of Antarctica drift further and further away from the continent before ultimately melting. This, in turn, shifts huge volumes of freshwater away from the Southern Ocean and into the Atlantic. Then, as the Southern Ocean gets saltier and the North Atlantic gets fresher, global ocean circulation patterns change dramatically. This causes the ocean to pull increased amounts of carbon dioxide from the atmosphere, reducing the so-called greenhouse effect, and pushing Earth into ice-age conditions.

icebergs breaking off of antarctica

Icebergs broken off and drifting far from the coast of Antarctica are key to the initiation of ice ages, says a new study. (Pierre Dutrieux/Lamont-Doherty Earth Observatory)

The scientists used multiple techniques to reconstruct past conditions. These included identifying tiny fragments of rock that Antarctic glaciers picked up as they scraped seaward over the continent’s surface. When the ice reached the coast, icebergs calved off, and the rocky debris was rafted along before getting dropped to the bottom as the icebergs melted.

The scientists based their conclusions on an ocean-bottom sediment core drilled in deep water 800 kilometers off the southern tip of Africa. The core was brought up by the International Ocean Discovery Program Expedition 361 in 2016. Analysis showed it contained layers of ice-rafted debris from Antarctica. “This is way far north for Antarctic icebergs to travel,” said study coauthor Sidney Hemming, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory. “It’s also where several key factors in ocean currents intersect. The study makes a powerful case that there is a series of factors all connected to the ice ages.” Hemming was co-chief scientist on the cruise.

The recovered sediments, encompassing more than 1.6 million years of history, contained one of the longest detailed records of Antarctic ice-rafted debris ever collected by researchers. Using climate-model simulations, the team determined that huge volumes of freshwater must have been transported by the icebergs. They further found that each layer of ice-rafted debris consistently presaged subsequent changes in deep ocean circulation. They reconstructed the changes from the chemistry of tiny shell-building creatures called foraminifera, also found in the sediments .

Researchers examine a sediment core

Researchers examine a sediment core taken off southern Africa. (Courtesy Sidney Hemming/Lamont-Doherty Earth Observatory)

“We were astonished to find that this lead-lag relationship was present during the onset of every ice age for the last 1.6 million years,” said the study’s lead author, Aidan Starr of the United Kingdom’s Cardiff University. “Such a leading role for the Southern Ocean and Antarctica in global climate has been speculated, but seeing it so clearly in geological evidence was very exciting.”

“Our results provide the missing link into how Antarctica and the Southern Ocean responded to the natural rhythms of the climate system associated with our orbit around the sun,” said coauthor Ian Hall of Cardiff University. Hall served along with Hemming as the cruise’s co-chief scientist..

Over the past 1.5 million years, Earth has plunged into at least 25 ice ages documented by scientists. The planet  is currently experiencing an interglacial period, in which temperatures are warmer. In the natural course of things, it would eventually dip into another ice age, starting thousands of years from now. But the study’s authors suggest that due to rising temperatures resulting from human emissions of greenhouse gases, the cycle may be disrupted; the Southern Ocean will likely become too warm for icebergs to travel far enough to trigger the necessary changes in ocean circulation, they say.

Hall says the study may help scientists understand how the climate may respond to human interference in the future. “As we observe an increase in the mass loss from [Antarctica] and iceberg activity in the Southern Ocean, [our] study emphasizes the importance of understanding iceberg trajectories and melt patterns in developing the most robust predictions of their future impact,” he said.

Adapted from a press release by Cardiff University.

Read the last 2 paragraphs of the article you posted……. 😂 

Link to comment
Share on other sites

3 minutes ago, BOHICA said:

Read the last 2 paragraphs of the article you posted……. 😂 

“May”

”likely”

Why don’t they just say we’re guessing?

:dunno: 

Link to comment
Share on other sites

17 minutes ago, BOHICA said:

 

If this really concerns you I highly suggest you get a private jet and rush to every corner of the world and gi e speeches for money....somebody has to do something. 

  • Haha 1
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Trying to pay the bills, lol

×
×
  • Create New...